If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+5x-10400=0
a = 1; b = 5; c = -10400;
Δ = b2-4ac
Δ = 52-4·1·(-10400)
Δ = 41625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{41625}=\sqrt{225*185}=\sqrt{225}*\sqrt{185}=15\sqrt{185}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-15\sqrt{185}}{2*1}=\frac{-5-15\sqrt{185}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+15\sqrt{185}}{2*1}=\frac{-5+15\sqrt{185}}{2} $
| s=7;6^2 | | y–5=10 | | 2n*6n=0 | | 6n2*6n=0 | | x²+10x-450=0 | | a16=289 | | An=(n+n1 | | AN=(2n-7) | | 9u−6=30 | | 4x-8=9x-7=180 | | 2y-3=7/2 | | 5y-2=3(y+2) | | |2x-2|=20 | | 2(y-5)=7(y+4) | | K=2x2-7x | | 27x-40=-25x-25 | | 26=8x−6 | | 27x-40=-25-25 | | 8x−12=5x−3 | | 2x+3=28−3x | | 2x+3x+1=-2 | | 2j=j+16 | | 100=3.14(r)^2 | | 2(s-9)=16 | | X=5y-4/3 | | 3(u-2)=30 | | 4(h+11)=116 | | (7^(y))=15 | | 7^(y)=15 | | 7-4x=2x+10 | | -3/8÷x=15/32 | | ŷ=10+30x25 |